A similar-sounding surnames sequel: haplogroup R-FT70038

by John Maury Branan, Jr. ☞
Genealogist, Billerica, MA, USA

Journal of the Fitzpatrick Clan Society 2023, 4, 11-44

Abstract

Historical and Y-DNA analysis suggests that men with Branan and similar-sounding surnames of haplogroup R-BY140757 originated from the de Braham of Norman origin, who settled in Suffolk after the Norman conquest of England. Over the centuries, these de Braham took on important roles in English and Irish governance, military, and judiciaries. And in Ireland, the Norman surname took on, as was not uncommon, a Gaelic sound and written appearance, i.e., Branan and similar.

Descendants of Irish colonial settlers in Virginia with Branan-sounding surnames (Branham, Brannan, Brannon, etc.), who belong to the sub-haplogroup R-BY140757>FT70038, have been identified as the progeny of two notable eighteenth-century colonial North American settlers – Caron Brannon and Kenyon Branan.

This article identifies genealogical lines with known or hypothesized connections to Caron and Kenyon. Caron Brannon’s will indicates he had four sons, three of whom have direct male descendants documented and one documented to have died without children. Additionally, there are birth records for a fifth son, the eldest, who finds no mention in Caron’s will. Paper genealogy shows Kenyon Branan had one son with certainty, but three other lines are widely speculated to descend from him.

This project identified and recruited descendants from Caron’s and Kenyon’s lines for DNA testing. Y-DNA results for descendants of two well-documented sons of Caron Brannon form sub-haplogroups, R-FTC4333 and R-FT101136. This result is consistent with the hypothesis that Caron Brannon is the patriarch of R-FT70038. However, a striking new sub-haplogroup to R-FT70038, dubbed R-Y10443, was discovered matching two of the three lines previously thought to descend from Kenyon. The eldest son of Caron is shown as a possible father to Kenyon or as the patriarch of R-Y10443, but he cannot be both. This new insight suggests strongly that the patriarch of R-FT70038 was one to three generations prior to Caron Brannon and that Kenyon Branan plays a minor role in the lineages of the haplogroup.

The number of potential R-FT70038 haplotree options is now clearly defined. A combined analytical assessment of Y-SNP, Y-STR, and autosomal results reinforces the well-documented genealogies, debunks the speculative ones, and reveals new connections and chronologies that no single previous approach provided. Statistical modeling of the combined DNA data prefers the Haplotree with R-Y10433 descending directly from the patriarch and Kenyon Branan descending directly from Caron Brannon through his eldest son John.
Part I: Mapping Haplogroup R-FT70038

Targeted use of Y-DNA and autosomal DNA testing

R-FT70038 is a sub-haplogroup of BY140757, estimated by Family Tree DNA (FTDNA) to have originated 1,052 – 1,334 years ago (68% confidence interval)1. A recent publication linked R-BY140757 with the Normans in England, specifically the de Brahmans of Suffolk. Eustace de Braham is the earliest recorded family member, with his name on various deeds ca. 1150 AD. The de Brahmans attained some degree of prominence and are recorded as holding knighthoods and positions in administration and judiciary. It has been posited that in 1250, Richard de Braham moved from Suffolk to Ireland, where he became the position of Sheriff of Kilkenny.2

Y-DNA has identified North American men with Branan-like surnames as being of haplotype R-BY140757. Among them is a descendant of Richard Branham, who is recorded in a 1665 land grant in the Virginia Colony. To date, Richard is the earliest man recorded in the North American colonies with the archetype surname. Also found to be a member of R-BY140757 is a paper-tree descendant of a Caron Brannon (born ca. 1687). That member, along with two other men with similar-sounding surnames, who were hypothesized to be sons of Kenyon Branan, formed the haplogroup R-FT70038, a sub-haplogroup of R-BY140757.

A comprehensive effort was launched to expand the understanding of the R-FT70038 haplogroup using Next Generation Sequencing (NGS), in this case, Family Tree DNA’s BigY-700, on candidates targeted via paper genealogies or previously reported DNA matches of R-FT70038 members.

Caron Brannon’s lines

An important source laying out the Y-DNA descendants of Caron Brannon is his last will.3

In the name of God men. I Caran Brannan being very sick and weak but of sound and perfect memory. I give devise and dispose of my Estate in the following Manner and form.

Item: I give to my wife Margarett Brannan the use of my Plantation during her Natural Life not to be no ways Molessted nor disturbed and after my wife’s decease. I give my said Land and Plantation to my Son James Brannan and his heirs.

Item: I give to my son Caran Brannan one feather Bed and furniture Now Standing in my Inner Room in the Corner after my Decease when his Mother thinks well.

---

Item: I give to my son Joseph Brannan the Feater (sic) Bed standing in my out room in the Corner after his Mother Deceases.

Item: I give to William Croucher and Eleanor his wife one Bed and furniture the Bed which my wife Lies upon after her Decease.

Item: I give to my Loving wife Margarett Brannan the use of all my Personable Estate during her Natural Life after all my Debts is Satisfied and paid and after her Decease to be Equally divided between all of my Children Viz: James, Caran, Thomas, and Joseph Brannan and Elenor Croucher.

Item: My Will and pleasure is that my estate shall not be appraised.

Item: I hitherto nominate constitute and ordain my Loving Wife Margarett Brannan and my son James Brannan to be exectrix and Executor of this my Last Will and testament, revoking and disannulling all other Will or wills heretofore be memer. Ratifying and confirming this and no othe to be my Last Will and Testament the 8th day of February, in the year of our Lord 1749.

Two approaches were used to find candidates for the further mapping of R-FT70038. First, traditional genealogy was used to trace the lines for Caron’s sons named in his will, viz., James, Caran, Thomas, and Joseph, to living male descendants as candidates for first-time Y-DNA testing. Second, candidates were sought among men who had already reported autosomal or Y-STR marker results and had identified Caron or his sons as direct ancestors; these candidates generally only required additional NGS testing. For Caron Brannon, meaningful results were obtained via the upgrade method.

Of the surname project participants, five were selected who had self-identified Caron Brannon (b. 1687) or one of his sons as their most distant known ancestor (MDKA). In each case, the plausibility of their available paper genealogies in place supporting the claim was reviewed. Multiple descendants of Caron’s sons Thomas and James Brannon provided DNA samples for the NGS testing.

To date, paper trails suggest that Caron’s son Joseph Brannon (b. 1729) died at age 23 without issue, whereas James and Thomas Brannon had numerous offspring. Caran Brannon Jr. is shown to have four sons, two of whom died without issue and the other two

---


5 Ibid. Thomas Dudley testified that James Brannan instructed him that all goods to go to his wife and children

A similar-sounding surname sequel: haplogroup R-FT70038

with no documentation yet found. Another child, John, was born to Caron and Margaret Brannon in 1718, but no subsequent records for him are found and he is not mentioned in Caron’s will. John could have pre-deceased his father or moved away and lost contact with the family, etc.

The results of the NGS of Caron Brannon lines were consistent with the reported paper genealogies. Importantly, while all testers were confirmed to belong to Haplogroup R-FT70038, as expected, two new sub-haplogroups were uncovered, which align with Thomas and James, respectively (Figure 1). The members of the James Brannon line are part of the sub-haplogroup R-FT101136 and share four unique Y-SNPs. The paper genealogy shows the participants’ most recent common ancestor (MRCA) was James’s only son, William Brannon (b. 1745). Figure 1 depicts for convenience all four of the Y-SNP mutations for R-FT101136 as having occurred in James Brannon; however, some or all of these mutations could have occurred in William Brannon.

Thomas Brannon’s line (Figure 1) contains descendants that form a new sub-haplogroup R-FTC4333 and share one unique Y-SNP. The paper genealogy shows that the two FTC4333 members’ MRCA was Leroy J. Brannan (b. 1754). A third participant, BRAN20, who descends from Thomas through Leroy’s brother Caren Brannon (b. 1752) is, as expected, a member of R-FT70038. However, this participant does not have the SNP FTC4333. Therefore, we know definitively that Leroy C. Brannan (b. 1754) was the patriarch of R-FTC4333. Further, the other sons of Thomas Brannon, (James, Thomas Jr, Caron, and William) are not a part of R-FTC4333 and are therefore candidate ancestors for para-haplogroup members of R-FT70038.

The discovery of two sub-haplogroups descending from Caron Brannon’s sons preserves the narrative that he was the patriarch of R-FT70038. If, for example, any of the three unique Y-SNPs discovered in this testing had been shared between Thomas and James’ descendants, that Y-SNP, by definition, would have originated in Caron, not Thomas or James. While a ‘Caron Brannon haplotype’ is absent, defining Y-SNPs are found among Caron’s sons, Thomas and James. The ‘Patriarch Caron Brannon’ hypothesis is revisited in subsequent sections.

The six participants were also compared via autosomal DNA analysis. The R-FTC4333 members, BRAN1 and BRAN2, are fourth cousins with a 69% theoretical chance of showing a match defined as sharing > 7 centimorgans of DNA across the autosomes. For BRAN1 and BRAN2 there was no such autosomal match. Neither BRAN1 nor BRAN2 exhibited an autosomal match for BRAN20, their fifth cousin, once removed. Similarly, among the R-FT101136 members who are fourth cousins, once removed, there is a 48% chance of an autosomal match > 7 centimorgans but no match was detected. The implications of these autosomal results and those of the entire R-FT70038 haplotree will be discussed later.

Figure 1: Haplogroup R-FT70038 – direct descendants of Caron Brannon

Notes: Matching Y-SNPs are shaded green, and matching Y-STRs are shaded blue. The font is colored for those Y-STRs that are convergent elsewhere in the R-FT70038 haplotype.

© Copyright 2020-23 | All rights reserved | The Fitzpatrick Clan Society
Y-STR testing within R-FT70038 has also identified a single shared mutation in the R-FT101136 branch versus the ancestral value for the R-FT70038 kits tested to date. That mutation, DYS446 13>14, occurred in the James Brannon line in or before the MRCA, William Brannan. Figure 1 shows that the Y-STR mutation occurred within the same timeframe as the Y-SNP mutations for R-FT101136. Each of the participants’ Y-STR mutations from the ancestral values are shown in Figure 1; ‘private’ Y-SNPs, those with no reported match in the databases, are not shown. In this analysis, the Y-STR and autosomal DNA test results do not provide any more information for defining the family tree branches than is found via Y-SNP data. Later it will be shown that combining these three types of DNA data can help establish timelines and generational steps between the various haplotree branches.

**Kenyon Branan Lines**

Kenyon Branan is another documented Virginian from the eighteenth century whose descendants are of haplogroup R-FT70038. The strongest documentation for Kenyon is in the family Bible for James Branan. This James Branan is shown in the 1850 United States Census as being born in North Carolina in 1766. James’ gravestone in Wilkinson County, Georgia shows a birth date of 1770.

From the Cooper-Ethridge-Branan Bible:

James Branan, son of Kenyon Branan of Va., m. 1795, Sarah Tommy. Their children:

<table>
<thead>
<tr>
<th>Name</th>
<th>Birth Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris</td>
<td>8-25-1796</td>
</tr>
<tr>
<td>Polly</td>
<td>1-11-1798</td>
</tr>
<tr>
<td>Adam</td>
<td>12-19-1799</td>
</tr>
<tr>
<td>Winnie</td>
<td>7-7-1801</td>
</tr>
<tr>
<td>Vashti</td>
<td>4-1-1803</td>
</tr>
<tr>
<td>Joseph</td>
<td>1-18-1805</td>
</tr>
<tr>
<td>Caswell</td>
<td>8-10-1807</td>
</tr>
<tr>
<td>Paschal</td>
<td>3-3-1809</td>
</tr>
<tr>
<td>James</td>
<td>12-29-1810</td>
</tr>
<tr>
<td>Alfred</td>
<td>7-21-1812</td>
</tr>
<tr>
<td>Sarah</td>
<td>12-4-1813</td>
</tr>
<tr>
<td>Frances</td>
<td>3-1-1815</td>
</tr>
<tr>
<td>John Tommy</td>
<td>2-21-1817</td>
</tr>
<tr>
<td>Littleton</td>
<td>12-18-1818</td>
</tr>
<tr>
<td>Almeta</td>
<td>4-28-1821</td>
</tr>
<tr>
<td>Elizabeth</td>
<td>1-18-1822</td>
</tr>
</tbody>
</table>


A similar-sounding surname sequel: haplogroup R-FT70038

James Branan and Sarah Tommey were married in Warren County in 1795\(^\text{12}\) and moved to Wilkinson County thereafter. They had nine sons and seven daughters.\(^\text{13}\) Direct male descendants of Harris Branan (b. 1796), James K. Branan (b. 1810), and Littleton Branan (b.1818) were recruited for DNA analysis. Figure 2 depicts the part of the James Branan Y-DNA tree focused on the eight participants whose relationships are in the nephew/uncle to fifth cousin range.

The immediate finding from this testing is that there is no ‘James Branan or Kenyon Branan haplogroup’, i.e., no Y-SNP is shared across the descendants of three of the sons of James Branan (Harris, James K. and Littleton). This result is significant and makes Y-DNA-based conclusions about any potential brothers for James Branan difficult. Likewise, there can be no Kenyon Branan haplogroup for definitive Y-DNA confirmation of his sons and their descendants.

There were six project participants, BRAN8, BRAN9, BRAN10, BRAN11, BRAN12, and BRAN21 who, according to traditional genealogy, descend from Harris Branan, James and Sarah’s eldest son. As shown in Figure 2, Harris Branan had two sons, James Wilson Branan (b. 1820) and Caswell Harris Branan (b. 1823), with descendants who participated in this project. The participant descending from James Wilson, BRAN12, has no named or private variant Y-SNPs, meaning that his Y-SNP profile is indistinguishable from Kenyon Branan’s, i.e., there are no intervening generational mutations. The participants descending from Caswell Harris Branan all share the SNPs R-FTB27810 and R-FTB32101; FTDNA used the former as the new sub-haplogroup label. Caswell Harris Branan is the unambiguous patriarch of R-FTB27810. Also observed within R-FTB27810 is the Y-STR mutation DYS534 16>17 in BRAN8, BRAN9, BRAN10, and BRAN21, but not BRAN11; this indicates definitively that the mutation occurred in Roger Augustus Branan (1872 - 1956). The DYS534 16>17 mutation is also shared with two R-FT70038 members, who are not R-FTB27810, viz., BRAN1 and BRAN19 and are clearly convergent rather than IBD (identical by descent) as they span distinct haplogroups.

Y-DNA data is silent regarding any relationship outside of R-FTB27810 (BRAN8-11, BRAN21) beyond the mutual membership in R-FT70038. Specifically, from a Y-SNP standpoint, BRAN12-14 only sit in the R-FT70038 para-haplogroup; however, autosomal DNA links all of them to BRAN8-11 and 21. This linkage is consistent with documented paper genealogy. The autosomal match matrix for the descendants of James Branan (1770 - 1851) is shown in Figure 3. The shared segment size is shown for all possible pairs. The matrix indicates that three para-haplogroup members in question, BRAN12, BRAN13, and BRAN14, are autosomal matches with each other and with members of sub-Haplogroup R-FTB27810. BRAN12, for example, shares autosomal segments with all test participants reported as descending from James Branan (and none of the other R-FT70038 project participants, as is discussed in a later section). The autosomal evidence supports that BRAN8-14 and BRAN21 share a common ancestor, and paper genealogy indicates that the common ancestor is James Branan (1770 - 1851).

A similar-sounding surname sequel: haplogroup R-FT70038

Figure 2: Haplogroup R-FT70038 – descendants of James, son of Kenyon Branan

Notes: Matching Y-SNPs are shaded green, and matching Y-STRs are shaded blue. The font is colored for those Y-STRs that are convergent elsewhere in the R-FT70038 haplotree.

Three other men are asserted to be sons of Kenyon Branan in various family trees: Joseph Branan (b. 1762), Jonathan Branan (b. 1777), and Wiley Bridges Brannan (b. 1799). While there are no records of their linkage, there is some circumstantial evidence to be discussed, and their descendant lines are well-documented and easily traced. We identified direct male descendants of each through conventional paper genealogy methods and recruited them to participate in the project. The willing submitted samples for DNA testing.
Figure 3: Autosomal relationships between descendants of James, son of Kenyon Branan

<table>
<thead>
<tr>
<th></th>
<th>BRAN8</th>
<th>BRAN9</th>
<th>BRAN10</th>
<th>BRAN11</th>
<th>BRAN12</th>
<th>BRAN13</th>
<th>BRAN14</th>
<th>BRAN21</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAN8</td>
<td>393</td>
<td>347</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>BRAN9</td>
<td>393</td>
<td>1945</td>
<td>52</td>
<td>93</td>
<td>0</td>
<td>13</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BRAN10</td>
<td>347</td>
<td>1945</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>BRAN11</td>
<td>0</td>
<td>52</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>57</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>BRAN12</td>
<td>28</td>
<td>93</td>
<td>17</td>
<td>50</td>
<td>14</td>
<td>121</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>BRAN13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>11</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>BRAN14</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>57</td>
<td>121</td>
<td>11</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>BRAN21</td>
<td>167</td>
<td>120</td>
<td>153</td>
<td>65</td>
<td>186</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Note: shared CentiMorgans of autosomal DNA

Joseph Branan was born in North Carolina in 1762. His will, dated 1857 and excerpted below, bequeathed his possessions to his five daughters and two sons.

*Georgia*
*Putnam County*

*Know all men by this so present that I Joseph Branan of the State and County aforesaid do make and ordain this my last will and testament in the manner and form as follows viz:*

*I give and bequeath to my Daughter Cinthy one bed furniture, one cow and calf*

*I give and bequeath to my Daughter Martha one bed and furniture, one cow and calf*

*I give and bequeath to my Son Wiley Brannan, one hundred acres land, being a part of Lot No. 382 lying North of the Rushy Creek, the same being mine (f)or life? – Also I give to my Said Son Wiley one baby horse and saddle.*

*I give and bequeath to my Daughter Sarah one bed and furniture, one cow and calf. I give and bequeath to my Daughter Nancy one bed and furniture, one cow and calf. I give and bequeath to my son Kinion Branan all the residue of my estate both real and personal in any (?) belonging to me. The land particular which I may die hopeful of, said Land known, by Law.*

---

I do hereby nominate and appoint my Said Son Kinion Branam sole executor to this my last will and testament, duly forsaking all other wills at any time heretofore made by me. In (?) whereof I have (?) to set my hand and seal this 20th day August 1857.

Many have noted, and sometimes confused, the similarly named Kinion, son of Joseph Branam, with the Kenyon Branan of unknown birthdate but ca. 1730, the father of James and, perhaps, Joseph. Kinion Branam was born, according to census estimates, between 1812 and 1814. The 1850 Census of Kinion’s household also shows his 88-year-old father, Joseph, and 85-year-old mother, Mary, living with him. Kinion’s descendants, and those of his brother, Wiley, are readily traced through census records.

Direct descendants of Joseph’s sons Kinion Branan and Wiley Branam, BRAN6 and BRAN7, respectively, participated in the DNA testing. Joseph Branam, like James Branam, has no defining Y-SNP. BRAN6 and BRAN7 each have Y-SNPs that are not found among other R-FT70038 members (Figure 4). Likewise, there is no Y-STR mutation shared between them that could be considered Identical by Descendancy (IBD), from Joseph Branam.

The Y-DNA results neither prove nor disprove the hypothesized sibling relationship between Joseph and James Branam, i.e., both being sons of Kenyon. Autosomal results for our test participants are also neutral in providing any evidence that Kenyon Branan is a direct ancestor of Joseph Branam. Figure 5 below shows that BRAN6 and BRAN7 are autosomal matches for each other, as expected. BRAN6 matches both a Caron Brannon descendant and a Kenyon Branan descendant, while BRAN7 matches a Kenyon Branan descendant. There are currently no other autosomal matches for Joseph Branam descendants BRAN6 or BRAN7 in our test group other than those shown in Figure 5. Accordingly, the Joseph Branam line is redrawn to show no confirmed connection to Kenyon Branan or his descendants other than being members of R-FT70038. Complete haplogroup autosomal matching results are shown in the appendices.

A more definitive disruption of conventional wisdom generated by these test results is seen for the placement of the lineages descending John Brannan, Jonathan Brannan, and Wiley Bridges Brannan. Jonathan Branan (b. 1777) has been named as a speculative son of Kenyon Branan. Jonathan’s son was James Kenyon Branan (b. 1818), and his grandson was Benjamin Caswell Branan (b. 1844) – the relatively uncommon names of Kenyon and Caswell appear throughout the James Branan (b. 1770) and Jonathan Branan (b. 1777) family trees. Both families resided in Georgia. Past genealogists may have considered the shared names and geographies circumstantial evidence for the presumed sibling connection.

Figure 4: Descendants of Joseph, oft hypothesized son of Kenyon Branan

Notes: Matching Y-SNPs are shaded green, and matching Y-STRs are shaded blue. The font is colored for those Y-STRs that are convergent elsewhere in the R-FT70038 haplotree.
Wiley Bridges Brannan (1799-1865) presents two traditional genealogy challenges. The first is that there is no record of who his father is, though, as mentioned, speculative family histories name him as a son of Kenyon Branan.\(^ {19} \) The second challenge is that his name and lifespan closely match Joseph Branan’s son Wiley Branan (1800-1864). Many family trees link to the wrong Wiley Branan or consider them to be the same person. The traditional genealogy shows that Wiley Bridges Brannan resided with his family in Henry County, GA\(^ {20} \), while Wiley Branan resided with his family in Harris County, GA, some sixty miles away.\(^ {21} \)

The Y-DNA results, illustrated in Figure 6, tell a clear and compelling story resolving all confusion and speculation, viz.

- The descendants of Jonathan Branan and Wiley Bridges Brannan share two unique Y-SNPs and, unexpectedly, with a third project participant who descends from John Brannon (b. 1775).
- A sub-haplogroup of R-FT70038, R-Y10443, is formed based on these shared Y-SNPs.
- Within this sub-haplogroup R-Y10443, the descendants of Jonathan Branan and John Brannon share a Y-STR mutation that is not present in the descendant of Wiley Bridges Brannan. This difference suggests that one additional generation, ‘Unknown Brannon 2’ stands between the siblings John and Jonathan, and the Wiley Bridges Brannan line.

---


This single Y-STR mutation, DYS533 13>12, will play a significant role in our analysis of the patriarch Caron Brannon hypothesis.

- The presence of the R-Y10443 SNPs in the descendant of Wiley Bridges Brannan, but not in the descendant of Wiley, son of Joseph Branan, disproves any notion that the two Wileys were the same person.

Concerning Figure 6, note there is a significant age difference between the presumed siblings Jonathan Branan (b. 1775) and John Branon (b. 1777), and Wiley Bridges Brannan (b. 1799). Accordingly, another generation, ‘Unknown Brannon 3’, was inserted to bridge the age gap and provide a possible brother to ‘Unknown Brannan 2’. The patriarch of R-Y10443, “Unknown Branan 1” at 30 years per generation, would have been born ca. 1716. It is, therefore, possible, though speculative, that ‘Unknown Branan 1’ is John Branon (b. 1718), the first son of Caron Brannon Sr. Kenyon Branan’s reported but undocumented birth year (1730 or 1746) suggests that he is too young to be ‘Unknown Branan 1.’ Hence, the original hypothesis was revised and is illustrated in Figure 7.

It is a curious naming choice that deserves additional scrutiny for Jonathan Brannon and John Branon to be brothers. We note that both Jonathan and John Branan, along with Jonathan’s son Calvin are listed on the same page in the Newton County, Georgia census of 1830. In addition to geographic proximity, they are both shown to be 50 - 60 years old, lending credence to the proposed sibling relationship and that the ‘Unknown Brannon 2’ named one son John and another son Jonathan.

Para-haplogroup lines from Harris Branam and Bridges Brannon

Two lines of R-FT70038 project participants, BRAN18 and BRAN19, have MDKA’s Harris Branam and Bridges Brannon. Unlike other R-FT70038 lines, they are alone with no Y-DNA, autosomal or paper link to the other members. Bridges Brannon (b. 1777) was identified 25 years ago as the father of James Wallace Brannon (b. 1804, Edgefield District, SC). Both died in Alabama, where most of their descendants reside today. BRAN19 descends from Bridges Brannon and exactly matches BRAN9 at 111 markers, but the implied close relationship misleads since BRAN9’s membership is in sub-haplogroup R-FTB27810. Hence, the Y-STR marker mutation DYS 16>17 is convergent in BRAN9 and BRAN19 and not IBD.

BRAN18 descends through a well-documented line from Sampson Brannen who plausibly descends from Harrison Brannen (b. 1774), though the link has been inferred only from their co-location in Coffee County, AL in the 1850 Census. Harrison and his wife Cynthia were the only Brannens in that county of an age to be Sampson’s parents.

---

Figure 6: Sub-haplogroup R-Y10433 Descendants

Notes: Matching Y-SNPs are shaded green, and matching Y-STRs are shaded blue. The font is colored for those Y-STRs that are convergent elsewhere in the R-FT70038 haplotype.
A similar-sounding surname sequel: haplogroup R-FT70038

Part II: Sequential use of DNA data to derive the R-FT70038 Haplotree

The time to the most recent common ancestor (TMRCA) from two or more samples is estimated from DNA testing. However, the uncertainties associated with the TMRCAs are greater than is often useful to construct traditional family trees or to validate speculative trees. The comprehensive DNA testing and documented traditional trees for the R-FT70038 project have allowed a comparison of haplotrees constructed via Y-SNP data only; Y-SNP data with adjustments from Y-STR results; and Y-SNP and Y-STR data with adjustments based on autosomal DNA matching.

The step-by-step process is described below and illustrated in the sequence of Figures 8A – 8E. The use of all the data yielded a haplotree that closely matches the chronology and number of generations suggested by the existing genealogical data and gives insight into the age of the haplogroup beyond pure genealogical information. It is highly likely that haplotree revisions will occur in the future, as further Branans undertake Y-DNA tests and ‘new’ archival records are uncovered.

Haplotree by Y-SNP data only

The FamilyTreeDNA Discover tool26 was used to anchor the haplogroup and sub-haplogroup patriarchs at their most likely birth year, as shown in Table 1.

Table 1: Estimated of haplogroup origin years

<table>
<thead>
<tr>
<th>Haplogroup</th>
<th>Most likely birth year</th>
<th>68% Confidence Interval</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-FT70038</td>
<td>1727</td>
<td>1677 - 1769</td>
<td>1625 - 1806</td>
</tr>
<tr>
<td>R-FTC4333</td>
<td>1770</td>
<td>1687 – 1839</td>
<td>1586 - 1891</td>
</tr>
<tr>
<td>R-Y10433</td>
<td>1777</td>
<td>1702 – 1840</td>
<td>1613 - 1889</td>
</tr>
<tr>
<td>R-FT101136</td>
<td>1873</td>
<td>1823 - 1916</td>
<td>1761 - 1947</td>
</tr>
<tr>
<td>R-FTB27810</td>
<td>1892</td>
<td>1843 - 1934</td>
<td>1789 - 1963</td>
</tr>
</tbody>
</table>

It was assumed the test sample contributors were born between 1920 and 2010 and the most likely birth date for the last generation in the tree was defined as 1950 +/- 15 years. For illustration purposes only, a round estimate of 30 years per generation was used. It was assumed that each tester’s line branched off from different sons of the haplogroup patriarch, i.e., at the most distant relationship possible.

The resulting tree (Figure 8A) was drawn using Y-SNP results. It is similar to the FamilyTreeDNA Block tree, only more granular with generations and chronology aligned with the estimated haplogroup origin year. This haplotree fits in eight generations.

Haplotree by Y-SNP data with adjustments from Y-STR results

Insights derived from Y-STR data alter the haplotree in the following ways (refer to Figure 8B to follow the modifications).

- For the two-member haplogroup R-FTC4333, no new information for redrawing the tree is gained from Y-STR differences. Their Y-STR mutations occurred sometime after patriarch Thomas Brannan, and they are not shared.

- For sub-haplogroup R-FT101136, Figure 1 showed that each of the three members have a unique Y-STR mutation. No additional information is gained for redrawing Figure 8B tree from the Y-STR differences.

- For sub-haplogroup R-FTB27810, BRAN8-10 share a common Y-STR mutation (DYS534 16>17) while BRAN11 has the ancestral value of the haplogroup. BRAN8-10 have a common ancestor not shared by BRAN11. Figure 8B illustrates in red the modification to the original Y-SNP only tree to add the new branch within R-FT27810.

- For sub-Haplogroup Y-10443, BRAN15 and BRAN16 exhibit DYS533 13>12 while BRAN17 has the R-FT70038 ancestral value of DYS533 = 13.

- Accordingly, a new common ancestor, indicated in Figure 8B in red, is posited for BRAN15 and BRAN16 one generation after the Y10433 patriarch. This new common ancestor is an uncle of BRAN17 but not in BRAN17’s direct line.

- The STR adjustments do not change the eight-generation span of the R-FT70038 haplogroup predicted from SNP results.

Haplotree by Y-SNP and Y-STR data with adjustments from autosomal results

Insight derived from R-FT70038 members’ autosomal match data alters the haplotree further in the following ways (refer to Figure 8C to follow the modifications).

- Within a sub-Haplogroup, the SNP/STR tree shown in in Figure 8B implies a specific cousin relationship between the participants to be compared now with autosomal test results.

- An exhaustive empirical study establishing actual most likely shared autosomal segment lengths for various relationships has been published by Blaine Bettinger. Table 2 summarizes the relationships from that work relevant to the R-FT70038 haplotree. The SNP/STR tree was adjusted by adding or subtracting intervening generation blocks as appropriate to minimize the variation between the calculated most likely total shared segment length and the actual total matching segment length from the participants’ autosomal DNA test results.

---

A similar-sounding surname sequel: haplogroup R-FT70038

Figure 8A: Haplotree based on Y-SNP data only

© Copyright 2020-23 | All rights reserved | The Fitzpatrick Clan Society
The Journal of the Fitzpatrick Clan Society 4, 11-44. doi:10.48151/fitzpatrickclansociety01323, Ver1, 7 June 2023
Figure 8B: Haplotree based on Y-DNA SNP and STR data

- Adjustments from STR results
- 8 generations

© Copyright 2020-23 | All rights reserved | The Fitzpatrick Clan Society
The Journal of the Fitzpatrick Clan Society 4, 11-44. doi:10.48151/fitzpatrickclansociety01323, Ver1, 7 June 2023
Table 2: Autosomal DNA relationships, shared segment lengths, and match likelihood

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Shared segment length (cM)</th>
<th>Match likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nephew</td>
<td>1741</td>
<td>100%</td>
</tr>
<tr>
<td>1st-cousin</td>
<td>866</td>
<td>100%</td>
</tr>
<tr>
<td>1st-cousin 1R</td>
<td>433</td>
<td>100%</td>
</tr>
<tr>
<td>1st-cousin 2R</td>
<td>221</td>
<td>100%</td>
</tr>
<tr>
<td>2nd-cousin</td>
<td>229</td>
<td>100%</td>
</tr>
<tr>
<td>2nd-cousin 1R</td>
<td>122</td>
<td>100%</td>
</tr>
<tr>
<td>2nd-cousin 2R</td>
<td>71</td>
<td>98%</td>
</tr>
<tr>
<td>3rd-cousin</td>
<td>73</td>
<td>98%</td>
</tr>
<tr>
<td>3rd-cousin 1R</td>
<td>48</td>
<td>88%</td>
</tr>
<tr>
<td>3rd-cousin 2R</td>
<td>36</td>
<td>69%</td>
</tr>
<tr>
<td>4th-cousin</td>
<td>35</td>
<td>69%</td>
</tr>
<tr>
<td>4th-cousin 1R</td>
<td>28</td>
<td>48%</td>
</tr>
<tr>
<td>4th-cousin 2R</td>
<td>22</td>
<td>30%</td>
</tr>
<tr>
<td>5th-cousin</td>
<td>25</td>
<td>30%</td>
</tr>
<tr>
<td>5th-cousin 1R</td>
<td>21</td>
<td>18%</td>
</tr>
<tr>
<td>5th-cousin 2R</td>
<td>18</td>
<td>10%</td>
</tr>
<tr>
<td>6th-cousin</td>
<td>18</td>
<td>10%</td>
</tr>
<tr>
<td>6th-cousin 1R</td>
<td>15</td>
<td>6%</td>
</tr>
<tr>
<td>6th-cousin 2R</td>
<td>13</td>
<td>3%</td>
</tr>
<tr>
<td>7th-cousin</td>
<td>14</td>
<td>3%</td>
</tr>
<tr>
<td>7th-cousin 1R</td>
<td>12</td>
<td>2%</td>
</tr>
</tbody>
</table>

- For sub-Haplogroup R-FT101136, participants do not show any autosomal match with each other.

- From Table 2, we see that we only reach the > 50% chance of no autosomal match at the fifth cousin level implying at least five intervening generations between tester and patriarch.\(^{28}\)

- Figure 8C redraws the tree for FT101136, expanding the number of intervening generations from two to five in order to fit the most likely empirical relationship.

- For sub-Haplogroup FTC4333, the participants are not autosomal matches to others in their sub-Haplogroup. As mentioned previously, the chance of no autosomal match only reaches at least 50%, which is when a minimum of five intervening generations are present.

\(^{28}\) Donnelly, Kevin P (1983). The probability that related individuals share some section of genome identical by descent. Theoretical Population Biology, 23, 34-63.
• In FTC4333 the SNP/STR tree already had five intervening generations implied between the participants, so the autosomal information aligns with the Y-DNA-based assumptions for the tree. No adjustment to the tree is needed from these autosomal results.

• For sub-Haplogroup R-Y10443, the participants are not autosomal matches to others in their sub-Haplogroup. Y-STR data showed that BRAN15 and BRAN16 have a more recent common ancestor than their sub-haplogroup partner BRAN17. Autosomal results show that BRAN15 and BRAN16 are not autosomal matches for each other.

• As mentioned previously, the chance of no autosomal match only reaches 50% when at least five intervening generations are present. Accordingly, we adjust the intervening generations between BRAN15, BRAN and the MRCA (DY5533 13>12) from four generations to five generations.

• The autosomal relationship between sub-Haplogroup R-FTB27810 members and three of our Para-haplogroup members (BRAN12, BRAN13, and BRAN14) was described in the section on Kenyon Branan.

• The haplotree was adjusted to recognize that MRCA of BRAN8-14 and relationships and number of intervening generations were optimized to best fit the autosomal data within the constraints imposed by the SNP and STR results. The details of that optimization are provided in the appendices.

• Adjusting the haplotree to account for all the autosomal data stretches the tree from eight generations to eleven generations. Figure 8C summarizes the tree consolidating all the project DNA data. Note that we now permit the birthdates of the participants to be between 1920, 1950 and 1980 +/- 15 years.

• The addition of generations to best fit the autosomal data moves the founding date of sub-Haplogroup R-FTB27810 backward from 1890 to 1830. Likewise, the founding date of our haplogroup R-FT70038 is estimated to move backward from 1740 to 1680, which independently aligns with Caron Brannon’s reported birth date of 1683.

Haplotree adjusted with paper genealogy

The full haplotrees, applying paper genealogy to the DNA-based haplotree, are shown in Figures 8D (chronological alignment) and 8E (generational alignment). There are few edits to the haplotree generated by DNA data alone (Figure 8C).

The adjusted haplotree (Figures 8D and 8E), comprises eleven generations, matching the combined DNA analysis shown in Figure 8C. Neither DNA data nor paper genealogy definitively names the patriarch of R-FT70038.
Figure 8C: Chronological tree based on Y-DNA SNP, STR data and autosomal results
Figure 8D: Chronological tree based on Y-DNA SNP, STR Data, autosomal results and paper genealogy
Figure 8E: Generational tree based on Y-DNA SNP, STR data, autosomal results and paper genealogy

Notes: Matching Y-SNPs are shaded green, and matching Y-STRs are shaded blue. The font is colored for the Y-STRs that are convergent elsewhere in the R-FT70038 haplotree.
Part III – Revisiting the patriarch Caron Brannon hypothesis

All of the project participants’ lineages shown to belong to R-FT70038 have been traced by paper genealogy into the 18th century as shown in Figures 8D and 8E. Caron Brannon, the earliest named member in the haplogroup, had five sons. For Caron to be the patriarch of the whole haplogroup, plausible links must be established to four lines’ MDKAs, Kenyon Branan, Joseph Branan, Harris Branam, Bridges Brannon, and the patriarch of sub-haplogroup R-Y10443 (‘Unknown Brannon 1’ in Figures 8D and 8E).

We look at each of Caron Brannon’s sons in turn to check plausible links:

- Joseph Brannon died young, and his will indicates no wife or children. He is eliminated from consideration as a father of any para-haplogroup or sub-haplogroup lines.

- James Brannon was documented to have a single son, William, and all of his descendants belong to haplogroup R-FT101136. James and William are eliminated as a father of any line not belonging to R-FT101136.

- Thomas Brannon had five sons, James (b. 1742), Thomas, Caron, William, and Leroy. Leroy was shown to be the patriarch of R-FTC4333 and is therefore eliminated as a father of the four para-haplogroup lines. There is no documentation of James’s family, but he is old enough to be a father candidate of Harris (b. 1774) or Bridges (b. 1777). James is too young to be the father of Kenyon or Joseph (b.1762). Thomas, Thomas Jr, James, and Caron are mentioned as grandchildren in Thomas’s mother-in-law’s 1754 will, but William is not mentioned. William is therefore too young to be the sire of one of our four para-haplogroup lines.

- Caron Brannon, Jr. and his wife Susanna had nine children and their births are well-documented. The wills for two of Caron Jr.’s four sons, James (b. 1766) and Spencer (b. 1769), suggest that they had no male heirs. No documentation beyond birth is found for Caron Jr’s son Thomas Brannon (b. 1750) or William Brannon (b. 1756) – they are possible ancestors to any R-FT70038 para-haplogroup lines with the MDKA born after 1770, namely Harris Branam and Bridges Brannon. The lines of BRAN18 and BRAN19 could therefore descend through Caron Brannon Jr. The lines with the MDKAs of Joseph Branam and Kenyon Branan cannot.

- John Brannon, b. 1718 is undocumented after his birth. Accordingly, his birth date allows one to speculate that John is the MRCA for Joseph Branam (b. 1762), Harris


Branam (b. 1774), and Bridges Brannon (b. 1777). Kenyon Branan also could be John’s son or grandson – recall that there is no record of Kenyon’s birthdate which could range from c. 1710 - ca. 1749 based on his sole documented son James’s birth date of 1770. Likewise, the whole haplogroup line R-Y10443 could descend through Caron’s son John Brannon. However, the combined SNP and STR data discussed for haplogroup R-Y10443 shows us clearly that it is not possible for all of these suppositions to be simultaneously true.

The Y-STR mutation highlighted in Figure 6, DYS533 13>12, appears in the MDKAs for BRAN15 and BRAN16, both born in the 1770s and is central to our conclusions for the R-FT70038 haplotree. This mutation must be IBD from a common ancestor, designated ‘Unknown Brannon 2’ in Figure 6. ‘Unknown Brannon 2’, with a birth year ca. 1745, cannot be the patriarch for R-Y10443 because BRAN17 does not share the mutation. Therefore, the patriarch of R-Y10443, designated ‘Unknown Brannon 1’ in Figure 6 has a birth year of ca. 1715, approximately thirty years before the birth of ‘Unknown Brannon 2’.

If ‘Unknown Brannon 1’ is a descendant of Caron Brannon, the only documented possibility is that ‘Unknown Brannon 1’ is actually John Brannon (b. 1718), son of Caron. Moreover, if John Brannon is the patriarch of R-Y10443, then the other para-haplogroup MDKAs shown in Figure 8E cannot have descended from John since they do not share that SNP mutation and are not a part of R-Y10443. The Caron Brannon patriarch hypothesis lives now in the realm of undiscovered and undocumented sons and grandsons to link to the documented lines.

The combined analysis of autosomal, Y-STR and Y-SNP data show that the full tree should fit in around eleven generations, suggesting that the patriarch for R-FT70038 is Caron’s father or grandfather. While any of the discovered para-haplogroup lines can descend directly from Caron Brannon, all of them cannot. The youngest of the para-haplogroup MDKA’s, Harris Branam and Bridges Brannon could only descend from Caron’s son John or through Caron’s grandsons James (son of Thomas), Thomas (son of Caron Jr.) or William (son of Caron Jr.).

Figure 9 illustrates a simplified rendering of the R-FT70038 haplotree’s remaining possible structures. Monte Carlo analysis of autosomal and Y-DNA STR data will identify the most likely option.


In Part II we used the Y-DNA STR and autosomal DNA result for each test participant to determine, individually, if they had shared common ancestors other than the patriarch and how many generations from the patriarch they are likely to be. This technique allowed the construction of a partial haplotree but could not discern between the various remaining permutations of haplotrees shown in Figure 9. In Part IV, we posit three of the haplotrees sketched in Figure 9. We then use Monte Carlo simulations of known STR and autosomal DNA statistics to assess the range of outcomes to be expected for STR 111-marker
mutations and number of autosomal matched pairs in the posited trees. Finally, we compare the actual observed number of STR marker mutations and autosomal matched pairs measured in the test participants. The closest match between posited tree simulations and actual data identifies which of the haplotrees is most likely.

**Figure 9: Remaining candidates R-FT70038 haplotype structures**

The compact trees (described in the following figures as ‘John is Kenyon’s father’ and ‘John is Y10443’) postulate a single brother of Caron bearing a portion of the para-haplogroup lines. These compact trees are dependent as well on postulating that Caron’s eldest son John bears another portion of the para-haplogroup lines. At the other extreme of possible
trees, we test a simulation with multiple brothers of Caron, each individually siring a single line of the various para-haplogroup lines.

Each test participant, BRAN1-BRAN21, had a well-defined chance of experiencing an STR marker mutation for each of the 111 markers tested in each generation after the patriarch of the haplotree. A Monte Carlo simulation modeled the distribution of total Y-STR mutations expected in the project participants for the two most compact haplotrees and the most distributed haplotrees shown in Figure 10; note that actual test results showed forty-six Y-STR mutations.

The simulation distribution statistics from 2000-run Monte Carlo simulations for each compact haplotree are shown in Figure 11 on the left with blue bars. The average number of mutations predicted in both simulations is greater than the actual forty-six mutations found, but the difference is within one standard deviation – both trees are likely outcomes. The most distributed tree (described in the figures below as ‘Six Separate Descendant Lines’), with independent lines drawn to the patriarch from Caron, the R-Y10433 patriarch, Kenyon, Joseph, Harris and Bridges has the best fit between the simulation average number of mutations and the actual value (actual result is +0.13 Standard deviations above the simulation average, also described as a z-score of 0.13).

Autosomal data can be used in a similar manner to test the various trees. It is well-known that autosomal matching between distantly related pairs is rare but is occasionally seen. The statistical likelihood of finding an autosomal match, shown in Table 2, enables a Monte Carlo simulation of the three candidate haplotrees to calculate the expected distribution of matching pairs found in autosomal DNA testing of the project members.

The distribution statistics for number of matches is shown on the right side of Figure 11 with orange bars. Across the haplogroup our actual autosomal testing found thirty matched pairs. Two thousand-run Monte Carlo analyses for each haplotree produced average numbers of matched pairs within two standard deviations of the thirty actual matched pairs.

Figure 11 compares both the STR mutation and autosomal match DNA simulation results for the three candidate haplotrees. Z-scores are then plotted for the actual DNA results versus simulation in Figure 12. In Figure 12, scatter plot of Y-STR vs Autosomal simulation A-scores, a perfect match between simulation and actual results would yield a point at the origin of the graph. The haplotree simulations for Kenyon as a son of John have the smallest Z-score vector of 0.9 and are therefor the best fit of the actual DNA data. This most likely haplotree, based on all of the DNA data and authenticated traditional genealogy data, is the outcome of this work and is shown in full detail in Figure 13. It is stressed that the other permutations of the haplotree shown in Figure 10 are should not be considered precluded by this analysis.


© Copyright 2020-23 | All rights reserved | The Fitzpatrick Clan Society
The Journal of the Fitzpatrick Clan Society 4, 11-44. doi:10.48151/fitzpatrickclansociety01323, Ver1, 7 June 2023
Figure 10: Candidate haplotrees for Monte Carlo simulation analysis

Option 1 – John is Kenyon’s Father

Patriarch of R-FT70038

Caron Brannan (1683 - 1749)
John Brannan (1718 - ?)
Kenyon Brannan (c. 1740 - ?)

James Brannan (1770 - 1851)
Joseph Brannan (1762 - 1807)
Harris Brannan (1774 - 1800)
Bridges Brannan (1777 - 1848)

Option 2 – John is Y10443

Patriarch of R-FT70038

Caron Brannan (1683 - 1749)
John Brannan (1718 - ?)
Kenyon Brannan (c. 1740 - ?)

James Brannan (1770 - 1851)
Joseph Brannan (1762 - 1807)
Harris Brannan (1774 - 1800)
Bridges Brannan (1777 - 1848)

Option 3 – Six Lines of Brothers for Caron

Patriarch of R-FT70038

Caron Brannan (1683 - 1749)
Brother of Caron #1
Brother of Caron #2
Brother of Caron #3
Brother of Caron #4
Brother of Caron #5
Brother of Caron #6

Kenyon Brannan (c. 1740 - ?)
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown

James Brannan (1770 - 1851)
Joseph Brannan (1762 - 1807)
Harris Brannan (1774 - 1800)
Bridges Brannan (1777 - 1848)
Figure 11: STR mutation and autosomal match simulations for candidate haplotrees
Figure 12: Statistical Assessment of three haplotrees favors Kenyon’s descent through John Brannon
A similar-sounding surname sequel: haplogroup R-FT70038

Figure 13 – Most likely R-FT70038 haplotype

© Copyright 2020-23 | All rights reserved | The Fitzpatrick Clan Society
The Journal of the Fitzpatrick Clan Society 4, 11-44. doi:10.48151/fitzpatrickclansociety01323, Ver1, 7 June 2023
Part VI: The limits of similarly sounding surnames

Many of the BRAN lines have a long-standing identification with specific counties of Georgia in the United States. The R-FTC4333 haplogroup are the Gwinnett/Forsyth County BRANs. The R-FTB27810 BRANs and associated James Branan lines are of Wilkinson County. The R-Y10443 BRANs are of Henry County. The Joseph Branan line (SNPs FT74137 and FTA66287) are of Putnam County. Another BRAN line in Georgia is those of Bulloch County.

No Bulloch County BRANs participated in this project, but some relevant information was found. Several Bulloch County BRANs autosomally match BRAN6 of Putnam County. Like many of the lines in the project, the Bulloch County paper genealogy was strong back to the early 1800s but with no apparent paternal line link to members of R-FT70038. Unlike the R-FT70038 project participants, the Bulloch County BRANs most distant relatives were three brothers who immigrated together to Bulloch County from Ireland. It was found that a Bulloch County BRAN who has previously had his Y-DNA tested belongs to Haplogroup R-M222. Hence, not all longstanding BRAN families in Georgia are members of R-FT70038. A map depicting the associations of George BRAN haplogroups is shown in Figure 14.

Conclusions

Caron Brannon (b. c. 1683) is the MDKA of haplogroup R-FT70038 but is unlikely to have been the patriarch. DNA analysis suggests that the patriarch of R-FT70038 is most likely Caron’s unnamed father or grandfather. NGS testing validated reported, albeit imperfectly documented, paper genealogy for two of the sons of Caron Brannon (Thomas and James). James is the patriarch of a new sub-haplogroup, R-FT101336. Thomas’s son Leroy is the patriarch of a new sub-haplogroup, R-FTC4333.

Kenyon Branan’s widely speculated fatherhood of Jonathan Branan and Wiley Bridges Brannan is disproved and a new sub-haplogroup R-Y10443 was discovered as the actual description of Jonathan and Wiley’s line. The specific Y-DNA data generated in the testing is silent regarding Joseph Branan’s speculated descendant relationship to Kenyon. Likewise, the Y-DNA data generated from the individual project participants is silent regarding a direct descent relationship for Kenyon from Caron Brannon.

However, the combined autosomal and Y-DNA data for all of the test results does restrict greatly the number of possible haplotrees describing the connection of the tested lines’ MDKAs. Monte Carlo simulation of the possible haplotrees considering combined STR-mutation results and autosomal matched pairs across the whole haplogroup was used to identify the most likely haplotype. This best fit haplotype from the combined actual DNA results placed Kenyon Branan as the son of Caron Brannon’s eldest son John. This analysis also placed the R-Y10443 sub-haplogroup descending through an unnamed brother of Caron

---

33 Kenan, Alvaretta (1967). The Kenan Family and some allied families of the compiler and publisher. Statesboro, Georgia: J.S Kenan II.

Brannon. The combination of DNA data and simulation analysis allowed us to sketch a timeline and haplotype that supports the strong genealogies, disproves the speculative ones, and provides insight into the most likely relationships to have occurred beyond the paper trail.

**Figure 14: Georgia BRANs by county and haplotype**

![Map of Georgia showing BRANs by county and haplotype](image)

**Acknowledgements**

The author gratefully acknowledges the roles that Mike Fitzpatrick and Ian Fitzpatrick played in this article. Their initial hypothesis was the genesis of this project, and their expert guidance, encouragement and review of this work were central to its completion. The author also thanks the twenty-one BRAN project participants and in some cases their relations who authorized the DNA testing that allowed this work to progress to conclusion.

© Copyright 2020-23 | All rights reserved | The Fitzpatrick Clan Society
The Journal of the Fitzpatrick Clan Society 4, 11-44. doi:10.48151/fitzpatrickclansociety01323, Ver1, 7 June 2023